A personal account of #BLS6 by Pritish Chakravarty
(who is also the recipient of the most exciting award ever!)
The work field biologists do and the places they do it in blow my mind. The first time I wrote a “Through the Eyes of an Engineer” article was when I went to the Kalahari for the first time, and I thought I had seen all the amazing things that I would ever see in this life. I was happy and ready to settle down and tell my grandchildren these stories while they pulled my contentedly whitening hair. Well, being in Konstanz this past week for the Sixth Bio-Logging Symposium changed all that. With an enigmatic smile, Life brushed away the curtains in front of one of the rooms I hadn’t yet set eyes upon, and streaming rays of awe poured in and filled my consciousness.
The Bio-Logging Symposium is an international conference held every three years where people present findings and techniques related to data obtained through sensors put on/in animals. I’m writing this little piece as a memory of the unbelievable things I saw during this conference and the inspiring people I had the good fortune of meeting and talking to.
Coming from an engineering background, I’ve been conditioned to a world of buildings, shops, computers, graphs, apps and algorithms. This was the world my daily consciousness resided in and took for granted. This conference took this world and compressed it to a pixel in one of the frames of the feature films that is the biological planet we live on, and that’s hidden (fortunately, perhaps) from the eyes of city-dwellers like myself.
I have seen things during this conference that I did not even think about dreaming of. A map of the globe centered around Antarctica was shown in the very first keynote talk by the legendary Gerry Kooyman, who’d spent his entire life working with various animals in the white desert that is the Antarctic. Imagine if you got lost near the South Pole and came across a friendly seal and asked it for directions. Whatever place you’d ask for, the seal would just say, “Oh, it’s up north”, and it would always be right! Talking to Gerry Kooyman a few days later made me rethink the physical references we always take for granted. I asked him how people in the Antarctic managed to avoid crevasses hidden by deceptive, flimsy layers of superficial snow. In response, he told me how broad the issue really was. They could, in fact, not even pinpoint where the horizon was – where the ice ended and where the sky started was anybody’s guess. Even entire hummocks (ice “hills”) would be rendered invisible by the near-complete lack of contrast! Recounting one such episode, he said that once, while driving around in his snow-mobile, he noticed that the engine started straining, and despite going full-throttle, the speed was just not as high anymore. Steeling himself against a slowly sinking heart, fearing a vehicle malfunction, he kept going, and noticed after a while that the engine was back to normal. Curious, he said to himself. He later realised that he’d ridden over a hummock without even seeing it! Recounting a second other-worldly phenomenon, he said he would often chase the green lights of the Aurora Australis on his trusty snow-mobile as they passed over the Antarctic over several minutes.
I saw videos from cameras attached to the backs of elephant seals! Using these cameras, researchers working with National Geographic found that elephant seals would go down to the ocean floor, much lower than they’d earlier expected, to hunt for lobsters scurrying around. This was the first solid proof that protected areas defined for the seals by neighbouring countries needed to extend all the way down to the ocean floor, since the seals will anyway go there to forage, and the protection would only mean something if the entire area traversed by these seals was covered.
As if watching the ocean floor from an elephant seal’s point of view wasn’t spectacular enough, I also met someone from a group in California who put cameras on the back of a blue whale. A blue whale, can you imagine?! For the first time, I got a faint semblance of just how big it really was, and how surprisingly mobile it was for its size. It reminded me of how one has a brief moment of surprise when a plump person turns out to be an excellent dancer. In the video, the blue whale, which one often forgets is actually a predator, made its way determinedly towards a school of fish that had arranged itself into a spherical shape. Approaching the fish, I watched with a quickly dropping jaw as the blue whale reared its head up and opened its gargantuan jaws and swam right through the centre of that school of fish, gobbling up several of them in a single go! This group of researchers had also put gyroscopes and accelerometers on the blue whale along with the camera and saw how these beautiful, massive beasts made banked turns (where they not only turned their head to turn, but also rotated their body around the head-tail axis to make the turn at high speed) during hunting, and slower turns when they were simply sauntering along. What was quite surprising for me was that they actually used the accelerometer and gyroscope to understand what they saw in the videos! In any usual scenario, like with my study with the meerkats, one looks at the video first, observes the activity being carried out by the animal, and then tries to understand the signals recorded by the accelerometer. Puzzled, I asked them what required them to trust the accelerometer and gyroscope more than the video, and they then showed me a video that blew my understanding of deep underwater environments to smithereens. When you are a hundred metres underwater, it is extremely difficult, if not impossible, to gauge just from a picture of the water (from the camera attached to the blue whale) which way is up and which is down! How surprising! Only in some videos, the Sun shone through, and the top part of the video was slightly brighter than the bottom part, and so we could tell which direction was which. The sensors (the camera, inertial measurement units, pressure, temperature and light intensity recorders) were arranged in a cuboidal device with four suction cups on the bottom surface. These suction cups would be attached to the whale’s body. Sometimes, they said that the whale’s skin was as smooth as glass, and the unit would just slip down because the suction cups would just not hold. Other times, the blue whale would just shed a lot of its outer skin, and the cups would get detached along with the shed skin. So many practical challenges! How cool, how awesome! Phffff, I still can’t come to terms with watching the ocean from a blue whale’s perspective!
I learned that polar bears were great swimmers, and that they were truly ‘marine’ mammals. A study in the Arctic waters found a polar bear that swam for seven hundred kilometres straight, continuously over several days! They also showed a rather endearing picture of a little polar bear cub perched atop its mother’s back as it piggy-backed across the frigid waters with its mother swimming at the surface. Since the cubs were smaller and had lesser fat reserves than adults, they couldn’t venture out into the water alone at such an early age – they would just freeze to death otherwise!
Another talk gave, apart from other cool information on Arctic foxes, anecdotal evidence of just how powerful their olfactory senses might be. A truck transporting salmon in Norway had an accident and all the salmon fell in a heap on the ground. The next day, trotting over from more than a hundred kilometres away, a small group of Arctic foxes starting from Sweden had found their way to this site, and happily feasted on this lucky find. Comparing that to human olfactory abilities, I’m generally quite relieved when I realise I need deodorant before others around me start to agree.
Another professor told us about how adult vultures were experts at climbing thermals (to gain altitude in the most energetically efficient way), and how juvenile vultures tended to not do so well, as they would flap their wings at the wrong moment during the ascent and consequently be left far below the adults who were climbing the very same thermal with consummate ease. The adults were apparently very adept at choosing just the right moment to turn their body (approximately every 7 seconds) as they moved upwards in spirals, and the timing of the juveniles was probably off. In fact, that professor actually went on a sabbatical to Australia (or was it New Zealand? I forget) to learn how to fly a glider, and said that the world champions training at the same club he was taking lessons at had independently (probably) figured out that the ideal way to climb the thermals in that part of the world was also to twist the glider around in a spiral and wait for the right moment to turn! Amazing how these vultures had perfected this technique, and that nature had figured out the perfect way to do it all by itself!
Some other examples of the amazing abilities of diverse animals – a researcher using a barometer attached to the back of a sperm whale (I’m going to stop saying just how unbelievable it is that people actually get to interact with such creatures as part of their daily job! “Hey, how was your day?”. “Oh well, you know, the usual. Woke up at 7 am, had some breakfast, popped into the ocean to tag a sperm whale. You?”. “Uh, never mind…”) measured a dive-depth of 3526 m below sea-level (I’m sure about the 3 and 5, but perhaps not about the 2 and 6), which is the deepest dive-depth of a sperm whale measured till date. Three-and-a-half kilometres below sea-level – I’ll probably not be able to hike that distance in an entire day! That’s just unfathomable! Quite literally, I suppose. She did caution us about the precision of this number, since the barometer was close to the maximum amount of pressure that it could measure. Awe is oozing through my nostrils, and I don’t even have the flu.
Another story from a professor from Switzerland tells of a ‘plain, old’ hoopoe flying at a height of 6000 m! Six kilometres above sea-level! That’s as high as mountains in the Himalayas! It must have climbed a (or multiple) thermals on its skyward journey, the professor said.
I learned something else that turned my understanding of the world on its head. Magnetic fields affect the photoreceptors (rods) in our retina, and that modifies the images we see. It could, for instance, introduce a pattern of two broad intersecting lines superimposed on our ‘normal’ field-of-view. The Earth’s magnetic field does this to some animals, and the images that they see when they’re oriented in the north-south direction are apparently slightly different from those they see when they’re oriented in the east-west direction. However, there seemed to be much debate about whether animals actually use these directional differences, and how much of an impact this actually had on animal behaviour, and about how much we could really conclude from the experiments that were done to explore this in foxes.
Experiencing these hitherto hidden corners of the world vicariously through cameras installed in unlikely places has changed my understanding of the world, and the way I felt about this field. I thought I really enjoyed signal processing, and that understanding meerkat behaviour from acceleration data was a beautiful application of it. But this past week made me realise that actually seeing these beings as they go about their daily lives gives birth to a simple, pure feeling of empathy that does not have any logical reason or goal behind it. So many times we hear about heroic animal conservation efforts in articles and interviews, and it does leave us with a warm and fuzzy feeling about the good in humanity, but doesn’t really touch us. Seeing these animals myself over this last week, and actually coming into contact with the people studying with them and hearing them talk about it sort of cracked an outer shell I had in my mind about bio-logging and animal conservation. It is not something separate from our daily lives, not something that happens far away in an unseen corner of a world that doesn’t concern us. People are not unfeeling or self-centered either – they have just not seen! If we could all just simply see the marvel of life around the planet, just simply observe these beautiful beings going about their daily business, we would all just sit with tears streaming down our faces – tears that come from places beyond reason and logic and goals and structure. And empathy would awaken… just like that.
I realised that this was an extension of what the mystic masters say about human life as well – we only feel a need to protect ourselves at all costs (which gets manifested as fear, aggression, comfort- and power-seeking) because we believe in a false sense of identity (our body, our country, our religion) that separates us from the rest of existence. What if all of us were Existence itself? Carl Sagan’s quote comes to mind: “We are a way for the cosmos to know itself”. We are the cosmos itself, and keeping it in good health (as far as our influence extends) is just as natural as perhaps brushing our teeth or taking a bath!
I did not add photos to this post because of two important reasons. First, it’s the difference between watching a film and reading a book – the film feeds you images and doesn’t give you the opportunity or the time to imagine stuff on your own. When you read, however, you stop and visualise, and the work your neurons do to create these inner images opens the doors to memory and emotion (that’s my own opinion, of course). The second important reason why this post doesn’t have any pictures is because I didn’t click any. 🙂
PS: Here’s a brief description of the keynote speakers, and here’s the book of all the abstracts from the conference. And here’s a huge wave of gratitude to the organisers for making this event possible, and for giving me the opportunity to be a part of it.